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We give a statistical theory of shape fluctuations of droplets in emulsions. We have calculated the normal-
ized mean-square displacementDs of shape fluctuations analytically in both two and three dimensions to first
order in volume fractionf. We also performed computer simulations to study fluctuations in two dimensions
up to high area fractions. The results at lowfA are in excellent agreement with the analytical prediction.
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PACS number~s!: 82.70.Kj

Emulsions are mixtures of two immiscible fluids, one of
which is dispersed in the other. The structure of emulsions is
inherently unstable against the phase separation of two im-
miscible fluids because of the high cost of the interfacial
energy between them. However, an appropriate surfactant
that adsorbs on the interface of the two fluids can kinetically
stabilize emulsions indefinitely. Practical uses of emulsions
have been found in foods, cosmetics, pharmaceuticals, and
agricultural products@1,2#, and have brought about a great
interest in studying their properties.

The motivation for this work is Gang, Krall, and Weitz’s
@3# experiments on shape fluctuations of droplets in emul-
sions. It is known that a liquid droplet will be spherical at
zero temperature. Thermal fluctuations, however, give an ex-
tra energy of the order ofkBT, whereT is the temperature
and kB the Boltzmann constant, to the liquid droplet and
deform its shape away from spherical. The degree of defor-
mation can be characterized by the ratio of the average dis-
placement of every element on the droplet surface to the
radius of the undeformed sphere, which is proportional to the
ratio of kBT to the surface energy of the droplet. In Gang,
Krall, and Weitz’s experiments, the interfacial tensionG is
about 10 dyn/cm, and the radiusa of the droplets is about
1mm. At room temperature, the above-defined quantity for
measuring the magnitude of shape fluctuations is of order
1027. They performed diffusing-wave spectroscopy experi-
ments on both suspensions of effective hard spheres and
emulsion droplets. They interpreted differences in the dy-
namic scattering spectra as due to shape fluctuations, and
through use of a simple model were able to extract its small
magnitude. From that, they found, surprisingly, that the
shape fluctuations of droplets are strongly correlated to the
volume fractionf; it increases with the volume fraction,
negligibly at smallf, and very rapidly at higher volume
fractions.

The strong dependence of the droplet shape fluctuations
on their volume fraction indicates that interactions among
droplets are important in this problem. First, we can elimi-
nate the hydrodynamic effects on them through the back-
ground fluid, because the properties we are concerned with
are static, and hydrodynamics does not play a role. Droplet-
droplet collisions, on the other hand, will contribute an extra
energy source to the shape fluctuations. We take the point of

view that collisions are the cause of those observed phenom-
ena, and develop a model, attempting to make a quantitative
comparison to experiments. A simple model system which
we adopt for this problem consists of deformable colloidal
particles, or droplets. Our aim in this paper is to calculate
how translational degrees of freedom couple to the geometry
of individual droplets for our model system.

We first review the shape fluctuation calculations@3# for
an isolated droplet. The geometry of a droplet is specified by
the radius vectorR(V)5R(V) r̂ which points from the ori-
gin to the surface element at angular positionV5(u,f), and
r̂ is the radial unit vector. The magnitude of shape fluctua-
tions can be characterized by the normalized mean-square
displacement of the droplet surface as

Ds5^~R~V!2a!2&/a2, ~1!

where ^ & denotes the ensemble average over all different
positions and shapes of droplets.a is the radius determined
from the volumev0 of droplets byv05(4p/3)a3. To make
this quantity dimensionless, it is divided bya2. The surface
energy for a droplet is given byE5GA, whereA is the
surface area of the droplet. To simplify the mathematical
expressions, we work in spherical coordinates and denote the
derivative on the surface of a droplet by

¹'5û
]

]u
1f̂

1

sinu

]

]f
, ~2!

where û and f̂ are unit vectors. The expression forA in
terms ofR(V) can be then obtained@4#, and this givesE as

E5G R dVR2A11~¹'R!2/R2. ~3!

Let R(V)5a@11a(V)#, wherea is the dimensionless am-
plitude of shape fluctuations, which can be expanded in
terms of spherical harmonics:a5( lma lmYlm . For small
shape fluctuations,a!1, and we can expandE in terms of
a, yielding
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E5Ga2 R dV~11a!A~11a!21~“'a!2

'Ga2 R dV@112a1a21~“'a!2/2#

54pa2GF11~1/2p!a001~1/8p!(
lm

~ l 21 l12!ua lmu2G .
~4!

For a fixed droplet volumev054pa3/3,

v05a3 R dV~11a!3'a3 R dV~113a13a2!

5~4pa3/3!F11~3/4p!a001~3/4p!(
lm

ua lmu2G , ~5!

and thus

a0052(
lm

ua lmu2. ~6!

Substituting the above result into the equation forE, we have

E54pa2G1~a2G/2! (
l.1,m

~ l21!~ l12!ua lmu2. ~7!

The equipartition theorem gives the mean-square fluctuations
as

^ua lmu2&5
kBT

Ga2
@~ l21!~ l12!#21. ~8!

The normalized mean-square displacementDs is

Ds5 (
l.1,m

ua lmu2uYlmu25(
l.1

1

4p

2l11

~ l21!~ l12!

kBT

Ga2
.

~9!

This result can be understood by a simple dimensional analy-
sis, as we argued in the beginning.

In a system with many droplets, the translational motion
of droplets will be converted to surface energy when droplets
collide. We can describe this energy by an interaction poten-
tial V(r ), wherer is the distance between the centers of mass
of two droplets. For deformable droplets, there will be a
finite contact area when two droplets collide. This contact
area, however, is very small, of the order ofkBT/G, which is
;1027 times the droplet surface area, and will be ignored in
our consideration. Under this approximation,V(r ) is essen-
tially a hard-core potential, which can be written down ana-
lytically as

V~r !5H 0, r.rm

`, r,rm ,
~10!

whererm is the distance between the centers of mass of two
droplets when they just touch.rm depends on the shape of
the two droplets and their relative orientation. For small
shape fluctuations of two colliding droplets, an approximate
analytical expression forrm is

rm5a$21a1~V0!1a2~V0!

1@“'a1~V0!1“'a2~V0!#
2/4%, ~11!

whereV0 specifies the direction of the unit vector pointing
from the center of mass of one droplet to that of the other.
The derivation of this is given in the Appendixes. To calcu-
late the mean-square displacementDs, we rewrite Eq.~1! in
terms of the one-body reduced probability density function
g1@R(V)# @5# as

Ds5~1/n! (
R~V!

g1@R~V!#@R~V!2a#2/a2, ~12!

wheren is the number density of droplets. For small volume
fractionsf, g1@R(V)# can be evaluated in terms of a Virial
expansion, which is an expansion in terms off. Our calcu-
lation is evaluated to the first order inf. The result is

g1@R~V!#5n exp~2GeffA/kBT!/Z, ~13!

where A is the surface area of a droplet,Geff5G@12(3/
2p)(kBT/Ga

2)f] and Z5(R(V)exp(2GeffA/kBT). The
derivation is given in the Appendixes. It is now straightfor-
ward to obtain an expression forDs,

Ds5Ds0@11~3/2p!~kBT/Ga
2!f# ~3D!, ~14!

where Ds0 is the mean-square displacement for a single
droplet, given in Eq.~9!. This result can be understood as
follows. Shape fluctuations of one droplet increase when that
droplet is in contact with others, and the amount of the in-
crement should be proportional to the probability of one
droplet touching other ones. Due to thermally induced shape
fluctuations, droplets expand their surface boundaries. This is
equivalent, on average, to droplets occupying more volume
space by a layer of shells around the droplets with a thick-
ness on the order ofkBT/Ga. The probability of finding one
droplet touching others is thus the probability that their shells
overlap, which is }n(kBT/Ga)(4pa2)53(kBT/Ga

2)f.
This provides an interpretation of the second term in Eq.
~14!. We also calculatedDs for two-dimensional~2D! drop-
lets along the same lines as the 3D calculations. The result is

Ds5Ds0@11~1/p!~kBT/Ya!fA# ~2D!, ~15!

whereY is the line tension of 2D droplets andfA their area
fraction. Comparison of the 2D result to the 3D one indicates
that the dimensionality in this problem does not qualitatively
change the behavior of thef dependence ofDs. This is an
important point that motivates our 2D Monte Carlo computer
simulations, which will be discussed below.

Applying Eq. ~14! to Gang, Krall, and Weitz’s experi-
ments, we find that thef dependence ofDs is very weak at
smallf,

Ds5Ds0~11231027f!. ~16!

This evidently predicts fluctuation enhancements that in
practice would not be experimentally observable over the
range of its validity,f→0. Indeed in Ref.@3#, for f,0.2,
the several points given display a negligible enhancement,
and include 0 within error bars. At high volume fractions in
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the experiments, significant enhancements are found, with
Ds/Ds0;1.8 atf;0.55. To make quantitative predictions
at high volume fractions requires a calculation to higher or-
der in f than the first order one done here. Unfortunately,
this calculation turns out to be very difficult mathematically.
In order to proceed, we decided to perform Monte Carlo
computer simulations, which allow us to determineDs at
high volume fractions. Our simulations will be restricted
only to the case of 2D droplets because of limitations of real
computer time. The similarity between the above 2D and 3D
results, Eqs.~14! and ~15!, suggests that 2D simulations
should predict the qualitative behavior of 3D droplets for
Ds on f.

In simulations, we need a mechanism to prevent droplets
from interpenetrating when they move. A model solution to
this problem was put forth by Leibler, Singh, and Fisher@6#,
which we will follow, is to construct individual droplets us-
ing a large number of neighbor-connected beads, illustrated
in Fig. 1. The distance between neighboring beads within a
droplet needs to be controlled to be less than a values0, so
that, for every step of moving beads during simulations,
beads from other droplets cannot penetrate it. We choses0 to
be one and a half times the diameterd of the beads in our
simulations. A line tension of droplets arises from the instal-
lation of a spring between two neighboring beads within a
droplet. We used the finite extensible nonlinear elastic spring
potential@7#

Vspring5
k

12~s/s0!
2 ~s,s051.5d!, ~17!

wherek is the spring constant, ands the distance between
two neighboring beads. The spring constantk is like the line
tensionY. Note that the spring length is measured in units of
the bead diameterd, and k is thus related toY by
k/d25Y/a. In simulations, fixing areas of droplets is diffi-
cult to implement. We therefore changed the statistical en-
semble from an area-fixed to a pressure-fixed ensemble. The

pressure here is like a Lagrange multiplier, and it actually
represents the pressure differenceDP between the inside and
the outside of droplets. The Gibbs potential for a system
containing a number ofN droplets is given by@8#

F5(
j51

N

(
i51

M
k

12~sj
i /s0!

2 2(
j51

N

DPAj , ~18!

wheresj
i is the length ofi th spring in dropletj , andAj is the

area of dropletj . M is the number of beads in a droplet. We
selectedM550 beads for a droplet andN581 droplets
bounded by periodical boundaries in a system. In the
pressure-fixed ensemble, the radius of every droplet is not
fixed, and its average value is determined byk/DP. We
choseDPd25k. The dimensionless quantitykBT/DPa

2 or
kBT/k is like kBT/Ya in that it characterizes the magnitude
of shape fluctuations of droplets. At small volume fractions,
the f dependence ofDs is very weak, as seen from the
result of the analytical calculations, and is much smaller than
the statistical error produced in simulations at reasonable
computer time. To test the theoretical predictions, we need to
increasekBT/k or kBT/DPa

2, which is equivalent to increas-
ing the temperature or reducing the line tension for a real
system. We setkBT/DPd

2510. The average radiusa is
about 6.5d and, thus,kBT/DPa

2;0.24.
Simulations@9# were carried out by randomly moving the

centers of mass of droplets and randomly varying their
shapes. First, we randomly selected a droplet and moved its
center of mass; in addition, we randomly chose a bead in this
droplet and changed its position. The latter step was repeated
50 times in order to give every bead in the droplet an equally
probable chance to move one time. Second, we repeated the
above procedure 81 times to complete a simulation cycle,
and then continued the process of these cycles until the sys-
tem reached thermal equilibrium@9#. Finally, we performed

FIG. 2. Plot ofDs/Ds0 vsfA from simulations in two dimen-
sions. The inset includes the first three points of the plot. The
dashed line is the result from analytic calculations to first order in
fA .

FIG. 1. A single droplet simulated by 50 neighbor-connected
beads.
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an ensemble average over a million cycles.Ds was calcu-
lated by the following formula:

Ds5K (
i51

N

~1/N!~Ri2R0!
2L /a2, ~19!

whereR05(1/N)( i51
N Ri and a5^R0&. The simulation re-

sults are summarized in the plot ofDs/Ds0 vs fA , shown
in Fig. 2. At small area fractions, plotted in the inset, the
simulation results are compared to the analytic predictions to
first order infA , Eq. ~15!. Excellent quantitative agreement
is found. At higher area fractions,fA.0.35, large deviations
from Eq. ~15! are seen, andDs develops a much stronger
dependence onfA . We can understand this as follows. At
low area fractions, collisions mostly occur between two
droplets. But at high area fractions, multiple collisions
among droplets are more likely to take place. In Fig. 3, we
present snapshots of the simulated emulsion systems for two
different area fractions. One is atfA50.177, a low area
fraction and the other is atfA50.458, a relatively high area
fraction. It can be noticed that at the low area fraction most
of the droplets are isolated, and only a few of them are in
contact. At the higher area fraction, many droplets are sur-
rounded by others, and there are more touching droplets.
Note that our simulations have not reached a very high area
fraction, when compared to the limit of random close pack-
ing which is 0.82 for 2D hard disks@10#. In the experiments
@3#, on the other hand, the highest volume fraction is
;0.55, not far below the limit of random close packing for
3D hard spheres which is 0.64@10#. It will be interesting to
know if simulations at very high area fractions, close to the
limit of random close packing, can predict a large increase of
Ds with respect to that at low area fractions of the same
magnitude as seen in the experiments. We will leave this for
a future work.

In conclusion, we established a statistical model to de-
scribe the shape fluctuations of droplets in emulsions. At
small volume fractions, we obtained an analytic expression
for the normalized mean-square displacementDs in both
two and three dimensions. At higher volume fractions, our
2D Monte Carlo computer simulations indicate thatDs
tends to increase greatly, also as seen in the experiments.
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lations, and Phil Segre` for a careful reading of the manu-
script. The author is grateful for financial support under NSF
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APPENDIX A

In this appendix, we derive Eq.~11!. The shapes of two
droplets are specified by the radius vectorsR1(V) and
R2(V), respectively.a1(V) and a2(V) are introduced, as
before, as dimensionless amplitudes of shape fluctuations.
We designateR0 as the vector pointing from the center of
mass of droplet 1 to that of droplet 2, which determine the
relative position of the two droplets. We now need to deter-
mine howrm depends ona1 anda2, and the angular position
V05(u0 ,f0) of R0.

A simple mathematical scheme to determinerm is that we
suppose two droplets could fictitiously intersect. The inter-
section will decrease when we move the two droplets away
along the vectorR0, and it eventually converges to one point
when they just touch. This is illustrated in Fig. 4. The ele-
ment of the intersection on both surfaces of the two droplets
is determined by the angular displacement fromR0,
DV15(Du1 ,Df1), if measured at the center of mass of
droplet 1 orDV25(Du2 ,Df2) if measured at that of droplet
2. DV1 andDV2 satisfy

R1~V01DV1!2R2~V01DV2!5R0 . ~A1!

For small shape fluctuations,a1 and a2 are small. For a
small region of intersection of two droplets,DV1 andDV2
are small too. We can thus expandR1 andR2 in terms of
these small variables. To make the following mathematic
formulas compact, we define

Du15Du1û01Df1sinu0f̂0 ~A2!

and

Du25Du2û01Df2sinu0f̂0 , ~A3!

FIG. 3. Configurations of
simulated droplets at two different
area fractions, the left one at
fA50.177 and the right one at
fA50.458.
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whereû0 andf̂0 are the two unit vector at angular position
V05(u0 ,f0) in spherical coordinates. First,

r̂1~V01DV1!5@12 1
2 ~Du1!

2# r̂01Du1 ~A4!

and

r̂2~V01DV2!5@12 1
2 ~Du2!

2# r̂01Du2 , ~A5!

where r̂1, r̂2, and r̂0 are the unit vectors alongR1, R2, and
R0, respectively. We then obtain

R1~V01DV1!2R2~V01DV2!

5a@21a1~V0!1a2~V0!

2~Du1
21Du2

2!/21Du1•“'a1~V0!

1Du2•“'a2~V0!# r̂01a~Du12Du2!. ~A6!

From Eqs.~A1! and ~A6!, it is evident thatDu15Du2, and
this gives us

uR1~V01DV1!2R2~V01DV2!u

5a$@21a1~V0!1a2~V0!2Du1
2

1Du1•@“'a1~V0!1“'a2~V0!#%. ~A7!

The right-hand sides of Eq.~A7! approaches maximum when
two droplets move away and tend to touch just by one point.
rm is that maximum which is

rm5a$21a1~V0!1a2~V0!

1@“'a1~V0!1“'a2~V0!#
2/4%. ~A8!

APPENDIX B

In this appendix, we deriveg1@a(V)#. The free energy
for a system containingN droplets is given by

F5G(
i51

N

Ai1(
i, j

V~ ur i2r j u!, ~B1!

whereAi is the surface area for dropleti , and r i and r j are
the position vectors pointing to the centers of mass of drop-
lets i and j , respectively. For the grand canonical ensemble,
the partition function is

J5 (
p50

`
1

p!
xpE d3pr @Dpa#e2bF, ~B2!

wherex5ebm/lT
3 andb5(kBT)

21. Herem is the chemical
potential for the droplets in the system, andlT is the thermal
wavelength. The one-body reduced probability density func-
tion g1@a(V)# is defined as@5#

g1@a~V!#5
1

J (
p51

`
1

~p21!!
xpE d3~p21!r @Dp21a#e2bF.

~B3!

For a low volume fraction, the number density of droplets
n is small and so isx. We can expandg1 in powers ofx,

g15xe2bGA1Z0x
2e2bGAb2@a#1•••, ~B4!

where

b2@a#5~1/Z0!E @Da8#e2bGA8

3E d3r 8$exp@2bV~ ur2r 8u!#21% ~B5!

andZ05*@Da#exp(2bGA). x is determined byn through

n5
kBT

V

] lnJ

]m
5Z0x1~Z0x!2B21•••, ~B6!

whereV is the total volume of the system, and

B25~1/Z0!E @Da#b2@a#e2bGA[^b2@a#&shape. ~B7!

Equation~33! can be solved order by order in terms ofn, and
this gives

x5~1/Z0!~n2B2n
21••• !. ~B8!

Substituting Eq.~35! into Eq. ~31!, we obtain

g15n~e2bGA/Z0!@11~b2@a#2B2!n1•••#. ~B9!

Now we need to evaluateb2@a# andB2:

FIG. 4. The left diagram rep-
resents two intersecting droplets,
and the right one two droplets that
are only in contact at one surface
point.
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b25~1/Z0!E @Da8#e2bGA8 R dV0E
0

rm
drr 25~1/Z0!E @Da8#e2bGA8 R dV0~8a

3/3!@11~a1a8!/2

1~¹'a1¹'a8!2/8#3

'~2v0 /p!H R dV0@113a/213a2/413~¹'a!2/8#1 R dV0^3a/213a2/413~¹'a!2/8&shapeJ , ~B10!

wherev054pa3/3. The areaA of a droplet is given by

A5a2 R dV~11a!A~11a!21~¹'a!2'a2 R dV@112a1a21~¹'a!2/2#. ~B11!

With the aid of Eqs.~B7!, ~B10!, and~B11!, b22B2 is obtained:

b22B25~3v0/2p!H E dV0@2a1a21~¹'a!2/2#

2E dV0^2a1a21~¹'a!2/2&shapeJ 5~3v0/2pa2!~A2^A&shape!. ~B12!

Substituting the above result into Eq.~B9!, we finally obtain

g15n~e2bGA/Z0!@11~A2^A&shape!~3v0/2pa2!n1•••#'nexp~2bGeffA!/Z, ~B13!

whereGeff5G@12(3/2p)(kBT/Ga
2)f# andZ5*@Da#exp(2bGeffA).
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