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Shape fluctuations of droplets in emulsions

Weicheng Cai
Exxon Research and Engineering Company, Annandale, New Jersey 08801
(Received 19 July 1995; revised manuscript received 26 March)1996

We give a statistical theory of shape fluctuations of droplets in emulsions. We have calculated the normal-
ized mean-square displacement of shape fluctuations analytically in both two and three dimensions to first
order in volume fractionp. We also performed computer simulations to study fluctuations in two dimensions
up to high area fractions. The results at leby are in excellent agreement with the analytical prediction.
[S1063-651%96)08709-

PACS numbegps): 82.70.K]

Emulsions are mixtures of two immiscible fluids, one of view that collisions are the cause of those observed phenom-
which is dispersed in the other. The structure of emulsions iena, and develop a model, attempting to make a quantitative
inherently unstable against the phase separation of two insomparison to experiments. A simple model system which
miscible fluids because of the high cost of the interfacialwe adopt for this problem consists of deformable colloidal
energy between them. However, an appropriate surfactap@rticles, or droplets. Our aim in this paper is to calculate
that adsorbs on the interface of the two fluids can kineticallyhow translational degrees of freedom couple to the geometry
stabilize emulsions indefinitely. Practical uses of emulsion®f individual droplets for our model system.
have been found in foods, cosmetics, pharmaceuticals, and We first review the shape fluctuation calculatid$ for
agricultural productg1,2], and have brought about a great an isolated droplet. The geometry of a droplet is specified by
interest in studying their properties. the radius vectoR(Q)=R(Q)r which points from the ori-

The motivation for this work is Gang, Krall, and Weitz's gin to the surface element at angular positids (6, ¢), and
[3] experiments on shape fluctuations of droplets in emulf is the radial unit vector. The magnitude of shape fluctua-
sions. It is known that a liquid droplet will be spherical at tions can be characterized by the normalized mean-square
zero temperature. Thermal fluctuations, however, give an exdisplacement of the droplet surface as
tra energy of the order dfgT, whereT is the temperature
and kg the Boltzmann constant, to the liquid droplet and Ao={((R(Q)—a)?)/aZ, 1)
deform its shape away from spherical. The degree of defor-

mation can be characterized by the ratio of the average dis- i
placement of every element on the droplet surface to th&here() denotes the ensemble average over all different

radius of the undeformed sphere, which is proportional to th@0sitions and shapes of dropletsis the radlus3 determined
ratio of kgT to the surface energy of the droplet. In Gang, from the volumev, of droplets byv,=(47/3)a”. To make
Krall, and Weitz's experiments, the interfacial tensibris  this quantity dimensionless, it is divided . The surface
about 10 dyn/cm, and the radiasof the droplets is about €nergy for a droplet is given b=T'A, whereA is the
1m. At room temperature, the above-defined quantity forsurface area of the droplet. To simplify the mathematical
measuring the magnitude of shape fluctuations is of ordefXPressions, we work in spherical coordinates and denote the
10~7. They performed diffusing-wave spectroscopy experi-derivative on the surface of a droplet by
ments on both suspensions of effective hard spheres and
emulsion droplets. They interpreted differences in the dy- ~d ~1 9
namic scattering spectra as due to shape fluctuations, and VLZO%JFm%, v
through use of a simple model were able to extract its small
magnitude. From that, they found, surprisingly, that the . .
shape fluctuations of droplets are strongly correlated to thevhere @ and ¢ are unit vectors. The expression férin
volume fraction ¢; it increases with the volume fraction, terms ofR({)) can be then obtainddl], and this give€ as
negligibly at small¢, and very rapidly at higher volume
fractions.

The strong dependence of the droplet shape fluctuations E=T ig dOR?V1+(V, R)7/R2. 3
on their volume fraction indicates that interactions among
droplets are important in this problem. First, we can elimi-
nate the hydrodynamic effects on them through the backket R(Q2)=a[l1+ «(Q)], wherea is the dimensionless am-
ground fluid, because the properties we are concerned witplitude of shape fluctuations, which can be expanded in
are static, and hydrodynamics does not play a role. Dropletterms of spherical harmonicsyr=ZaY . For small
droplet collisions, on the other hand, will contribute an extrashape fluctuationsy<1, and we can expanl in terms of
energy source to the shape fluctuations. We take the point af, yielding
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rm=a{2+ a;(Qo) + ax(o)
+[V,a1(Qo)+V, ax(Q0)1%/4}, (11

E=Ta? ff dQ(1+a)V(1+a)?+(V, a)?

~Ia® % dO[1+2a+ a®+(V, a)?/2] where (), specifies the direction of the unit vector pointing
from the center of mass of one droplet to that of the other.
The derivation of this is given in the Appendixes. To calcu-
. late the mean-square displacemArmt, we rewrite Eq(1) in
terms of the one-body reduced probability density function
4)  gi[R(Q)][5] as

=47a’l

1+ (1/2m) aget (1/8m) 2, (1241+2)| oy
Im

For a fixed droplet volume ,=4ma®3,
Ao=(1n) X gi[RO)JRQ)-al?a®, (12
R(Q)

vo=2as jg dQ(1+ a)é~a® fﬁ dQ(1+3a+3a?) ) )
wheren is the number density of droplets. For small volume
fractions ¢, g4[ R(€2)] can be evaluated in terms of a Virial
, (5 expansion, which is an expansion in terms¢ofOur calcu-
lation is evaluated to the first order if. The result is

= (4ma%/3)

1+ (3/4m) agyt (3/4m) 2, | oy
Im

and thus gi[R(Q)]=nexp — T oAlkgT)/Z, (13)
aoo:_E |tyml % (6) whereA is the surface area of a dropldtes=11—(3/
fm 27)(kgT/Ta?) ¢] and Z=3g)eXp(—T'erA/kgT). The

derivation is given in the Appendixes. It is now straightfor-
ward to obtain an expression fdro,

E=47-ra21“+(a21"/2)|2 (I-D)(1+2)|am®. @ Ao=Aco[1+(3/2m)(kgT/Ta%) ¢] (3D), (14
>1m

o . _ where Agq is the mean-square displacement for a single
The equipartition theorem gives the mean-square quctuatlorﬁromet, given in Eq(9). This result can be understood as
as follows. Shape fluctuations of one droplet increase when that
kT droplet is in contact with others, and the amount of the in-
<|alm|2>:LZ[(|_1)(|+2)171_ (8)  crement should be proportional to the probability of one
I'a droplet touching other ones. Due to thermally induced shape
fluctuations, droplets expand their surface boundaries. This is
equivalent, on average, to droplets occupying more volume
1 21+1 keT space by a layer of shells around the droplets with a thick-
ness on the order dfzT/T"a. The probability of finding one

Substituting the above result into the equationEomwe have

The normalized mean-square displacemgntis

Ao= amlPlYimlP=2 — ——— .
';1:*”1 e Yim 'Zl 4m (1-1)(1+2) T'a® droplet touching others is thus the probability that their shells
9 overlap, which is «n(kgT/T'a)(4ma2)=3(kgT/Ta?) .
This provides an interpretation of the second term in Eg.
(14). We also calculated o for two-dimensional2D) drop-

lets along the same lines as the 3D calculations. The result is

This result can be understood by a simple dimensional anal
sis, as we argued in the beginning.

In a system with many droplets, the translational motion
of droplets will be converted to surface energy when droplets _
collide. We can describe this energy by an interaction poten- Ao=Aoo[1+(Um)(keT/Ya)¢a] (2D), (19

tial V(r), wherer is the distance between the centers of masgynereY is the line tension of 2D droplets anl, their area

of two droplets. For deformable droplets, there will be afaction. Comparison of the 2D result to the 3D one indicates
finite contact area when two droplets collide. This contackyat the dimensionality in this problem does not qualitatively
area,_?o_wever, is very small, of the order@fT/I', which is  change the behavior of the dependence ako-. This is an
~10" " times the droplet surface area, and will be ignored injmportant point that motivates our 2D Monte Carlo computer
our consideration. Under this approximatiof(r) is essen-  gimylations, which will be discussed below.

tially a hard-core potential, which can be written down ana- Applying Eq. (14) to Gang, Krall, and Weitz’s experi-
lytically as ments, we find that thes dependence af o is very weak at

small ¢,
0, r>ry ¢

V=1, o (10 Ao=Aoe(1+2X10 7¢). (16

wherer ,, is the distance between the centers of mass of tw@his evidently predicts fluctuation enhancements that in
droplets when they just touch,, depends on the shape of practice would not be experimentally observable over the
the two droplets and their relative orientation. For smallrange of its validity,p—0. Indeed in Ref[3], for $<0.2,
shape fluctuations of two colliding droplets, an approximatethe several points given display a negligible enhancement,
analytical expression far,, is and include 0 within error bars. At high volume fractions in
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FIG. 1. A single droplet simulated by 50 neighbor-connected FIG. 2. Plot ofAo/A o vs ¢, from simulations in two dimen-
beads. sions. The inset includes the first three points of the plot. The
dashed line is the result from analytic calculations to first order in

ba-

the experiments, significant enhancements are found, with
Aol/Aoy~1.8 at¢p~0.55. To make quantitative predictions o o )
at high volume fractions requires a calculation to higher or-Pressure here is like a Lagrange multiplier, and it actually
der in ¢ than the first order one done here. Unfortunately,represents the pressure differeride between the inside and
this calculation turns out to be very difficult mathematically. the outside of droplets. The Gibbs potential for a system
In order to proceed, we decided to perform Monte Carlocontaining a number dfl droplets is given by8]
computer simulations, which allow us to determife at
high volume fractions. Our simulations will be restricted NEY " N
only to the case of 2D droplets because of limitations of real _ _ _
computer time. The similarity between the above 2D and 3D F_,Zl ;1 1—(sj/so)? ,21 APA. (18
results, Eqgs.(14) and (15), suggests that 2D simulations
should predict the qualitative behavior of 3D droplets for
Ao on ¢.

In simulations, we need a mechanism to prevent droplet
from interpenetrating when they move. A model solution to
this problem was put forth by Leibler, Singh, and Fisf&l

wheres} is the length ofth spring in droplef, andA, is the
area of droplef. M is the number of beads in a droplet. We
ZelectedM =50 beads for a droplet andl=81 droplets
bounded by periodical boundaries in a system. In the

which we will follow, is to construct individual droplets us- pressure-fixed ensemble, the radius of every droplet is not

. . . gxed, and its average value is determined WAP. We
ing a large number of neighbor-connected beads, 'IIUStratechoseAPd2=k The dimensionless quantifgT/APa2 or
in Fig. 1. The distance between neighboring beads within g : 9

droplet needs to be controlled to be less than a vajuso
that, for every step of moving beads during simulations

beads from other droplets cannot penetrate it. We chpte result of the analytical calculations, and is much smaller than

be one and a half times the diametkof the beads in our L Sy .
) . . . : . the statistical error produced in simulations at reasonable
simulations. A line tension of droplets arises from the instal- . . -
: . ; . .. _computer time. To test the theoretical predictions, we need to
lation of a spring between two neighboring beads within a

o ) : . - “Increasekg T/k or kg T/APa?, which is equivalent to increas-
droplet. We used the finite extensible nonlinear elastic sprmgi;ng the temperature or reducing the line tension for a real

gT/k is like kgT/Ya in that it characterizes the magnitude
of shape fluctuations of droplets. At small volume fractions,
the ¢ dependence oo is very weak, as seen from the

potential{ 7] system. We sekgT/APd?=10. The average radiua is
K about 6.8 and, thuskgT/APa?~0.24.
Vo = s<s,=1.5d), 1 Simulationg 9] were carried out by randomly moving the
PG 1 — (s/sg)2 (5<% ) 7 centers of mass of droplets and randomly varying their

shapes. First, we randomly selected a droplet and moved its
wherek is the spring constant, arglthe distance between center of mass; in addition, we randomly chose a bead in this
two neighboring beads. The spring constlams like the line  droplet and changed its position. The latter step was repeated
tensionY. Note that the spring length is measured in units of50 times in order to give every bead in the droplet an equally
the bead diameted, and k is thus related toY by  probable chance to move one time. Second, we repeated the
k/d?=Y/a. In simulations, fixing areas of droplets is diffi- above procedure 81 times to complete a simulation cycle,
cult to implement. We therefore changed the statistical enand then continued the process of these cycles until the sys-
semble from an area-fixed to a pressure-fixed ensemble. Them reached thermal equilibriuf8]. Finally, we performed
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FIG. 3. Configurations of
simulated droplets at two different
area fractions, the left one at
$»=0.177 and the right one at
¢,=0.458.

an ensemble average over a million cycldsr was calcu- computer simulation. He also wants to thank Dave Weitz, Hu
lated by the following formula: Gang, and Al Krall for discussions of their experiments. Fi-
nally, he thanks Gary Grest for his advice on computer simu-
N lations, and Phil Segréor a careful reading of the manu-
Ao= < > (UN)(R— R0)2> la?, (190 script. The author is grateful for financial support under NSF
=t Grant No. 9122645.

where Ry=(1/N)=N. R, and a=(R,). The simulation re-
sults are summarized in the plot Afo/Aog VS ¢, Shown
in Fig. 2. At small area fractions, plotted in the inset, the In this appendix, we derive E11). The shapes of two
simulation results are compared to the analytic predictions tdroplets are specified by the radius vectdrg({)) and
first order ing,, Eq.(15). Excellent quantitative agreement R,(Q)), respectively.a;(Q) and a,({2) are introduced, as

is found. At higher area fractiong,>0.35, large deviations before, as dimensionless amplitudes of shape fluctuations.
from Eq. (15 are seen, and o develops a much stronger We designateR, as the vector pointing from the center of
dependence o, . We can understand this as follows. At mass of droplet 1 to that of droplet 2, which determine the
low area fractions, collisions mostly occur between tworelative position of the two droplets. We now need to deter-
droplets. But at high area fractions, multiple collisions mine howr ,, depends omr; anda,, and the angular position
among droplets are more likely to take place. In Fig. 3, weQ = (6,, o) of Ry.

present snapshots of the simulated emulsion systems for two A simple mathematical scheme to determipgs that we
different area fractions. One is @#,=0.177, a low area suppose two droplets could fictitiously intersect. The inter-
fraction and the other is at,=0.458, a relatively high area section will decrease when we move the two droplets away
fraction. It can be noticed that at the low area fraction mostlong the vectoR,, and it eventually converges to one point
of the droplets are isolated, and only a few of them are invhen they just touch. This is illustrated in Fig. 4. The ele-
contact. At the higher area fraction, many droplets are surment of the intersection on both surfaces of the two droplets
rounded by others, and there are more touching droplet$s determined by the angular displacement froRy,
Note that our simulations have not reached a very high area(),=(A#,,A¢,), if measured at the center of mass of
fraction, when compared to the limit of random close pack-droplet 1 orAQ,= (A 6,,A ¢,) if measured at that of droplet
ing which is 0.82 for 2D hard diskg0]. In the experiments 2. AQ); andAQ), satisfy

[3], on the other hand, the highest volume fraction is

~0.55, not far below the limit of random close packing for

3D hard spheres which is 0.640]. It will be interesting to Ri(Qo+AQ ) —Ry(Qo+AQ,)=R,. (A1)
know if simulations at very high area fractions, close to the

limit of random close packing, can predict a large increase ofor small shape fluctuationsy; and a, are small. For a
Ao with respect to that at low area fractions of the samegmg|| region of intersection of two dropletd}; andAQ,
magnitude as seen in the experiments. We will leave this fogre small too. We can thus expaRd and R, in terms of

a future work. _ . these small variables. To make the following mathematic
In conclusion, we established a statistical model to deformuylas compact, we define

scribe the shape fluctuations of droplets in emulsions. At

small volume fractions, we obtained an analytic expression

for the normalized mean-square displacemamnt in both A01:A01A00+A¢lsingogbo (A2)
two and three dimensions. At higher volume fractions, our

2D Monte Carlo computer simulations indicate thatr and

tends to increase greatly, also as seen in the experiments.

APPENDIX A

The author would like to thank his advisor, Tom Luben- R R
sky, for useful discussions, and for the suggestion to start the AO,=A0,6y+ A P,Sinbyehy, (A3)
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AB)

where bo and gAbO are the two unit vector at angular position

Qy=(6y,dp) in spherical coordinates. First,

F1(Qo+AQ)=[1-3(A6)]To+A6, (A4)

and

F2(Qo+AQy)=[1- 3 (A6,)%]To+ A6, (A5)

wherer,, T,, andr, are the unit vectors along,, R,, and
R, respectively. We then obtain
Ri(Qo+AQ)—R(Qy+AQ,)
=a[2+a1(Qo) + az(Lo)
—(AF+AB)2+A0,-V, ar(Qp)
+A0,-V, ay(Qy)fo+a(A0,—AB,). (AB)
From Egs.(Al) and (A6), it is evident thatA@,=A @,, and
this gives us
IR1(Qo+A07)—Ry(Qo+AQ,)|
=af[2+ay(Qg) + ax(Qg) — A6

+A0,- [V, a1(Qo)+V, ax(Qo)]}. (A7)

The right-hand sides of EGA7) approaches maximum when
two droplets move away and tend to touch just by one point.

I, is that maximum which is

rm=a{2+ a1(Qp) + ax(Qg)
+[V,oa1(Qo)+V, ay(Q0)]%/4}. (A8)

APPENDIX B
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AB,

FIG. 4. The left diagram rep-
resents two intersecting droplets,
and the right one two droplets that
are only in contact at one surface
point.

o1
2=, axpf d3Pr[DPale FF, (B2)
=o P!

p

Wherex=eB“/)\$ and 8= (kgT) 1. Here u is the chemical
potential for the droplets in the system, angis the thermal
wavelength. The one-body reduced probability density func-
tion g4[ ()] is defined ag5]

[

1
GlaI=z2 moy

xpf d3P~Yr[DP la]e FF.
(B3)

For a low volume fraction, the number density of droplets
n is small and so ix. We can expand); in powers ofx,

g,=xe PrA+z.x2%e FM'p,[al+ - - -, (B4)

where
ba[ @] =(1/Zo) f [Da'le A
X J dr’{exd —BV(Ir—r')]-1} (B
andZy= [[Da]exp(—BI'A). x is determined byn through

kgT dInE

V  du

=ZoX+(ZoX)?By+ - - -, (B6)

whereV is the total volume of the system, and

B,~(1120) | [Dalbslale "= (bl al)smape (BT

In this appendix, we derivg;[«({)]. The free energy Equation(33) can be solved order by order in termsmfand

for a system containindyl droplets is given by this gives
N 2
X:(]./ZO)(n_an +) (88)
F=F21 A+ V(Ir=r)), (B1)
= = Substituting Eq(35) into Eq. (31), we obtain
whereA, is the surface area for droplgtandr; andr; are
the position vectors pointing to the centers of mass of drop- gi=n(e A" Z)[1+ (ba]-By)n+---]. (B9)

letsi andj, respectively. For the grand canonical ensemble,
the partition function is Now we need to evaluate,[ «] andB2:
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' "m !
b2=(120)j[Da’]e_BrA ﬁdﬂof drr2=(1/zo)J[Da']e—ﬁFA f}@dﬂo(8a3/3)[1+(a+a’)/2
0
+(V,a+V, a")?8]?

~(2vqlm) 3§dQO[1+3a/2+3a2/4+3(via)2/8]+ §on(Sa/Z—i-3a2/4+3(Vla)2/8>shap4, (B10)

wherevy=4ma%3. The area of a droplet is given by

A=a’ fﬁ dQ(1+a)J(1+a)?+(V, a)’~a? 35 dO[1+2a+ a?+(V, a)?/2]. (B11)
With the aid of Eqs(B7), (B10), and(B11), b,— B, is obtained:

b2—82=(3v0/2ﬂ')[ f dQo[2a+ a?+(V, a)?/2]

- f dQO<2a+a2+(Via)2/2>shap%=(3UO/27Ta2)(A—<A>5hapQ. (B12)
Substituting the above result into E@®9), we finally obtain
g1=n(e AT Zo)[ 1+ (A—(A)shapd (3vol2ma®)n+ - - - J~nexp — Bl ¢1A)/Z, (B13)

wherel «=T[1— (3/27) (kg T/T'a?) ¢] andZ= [[D a]exp( BlxA).
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